# Transition Maths and Algebra with Geometry

#### Tomasz Brengos

#### Lecture Notes Electrical and Computer Engineering









Image: A Image: A















Э

イロト イボト イヨト イヨト

### Well known sets

You have come across the following sets:

 $\mathbb{N} = \{1,2,\ldots\}$  - the set of natural numbers

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$
 - the set of integers

$$\mathbb{Q}=\{rac{p}{q}\mid p,q\in\mathbb{Z} ext{ and } q
eq 0\}$$
 - the set of rational numbers

 ${\mathbb R}$  - the set of real numbers



• • = • • = •

# Sets: definition

#### Definition

A set is an unordered collection of distinct elements. We will use the notation  $x \in S$  to denote that "x is an element of the set S". We use curly brackets to identify elements of a set, e.g.  $A = \{1, 2\}, B = \{x, y, z\}.$ 

Example:  $S = \{a, b, c, d\}$ . Clearly,  $a \in S$  but  $e \notin S$ .

#### Notation

I ITECHNIKI WARSZAWSKIEJ

If A and B are sets then we say that A is a subset of B and write  $A \subseteq B$  whenever  $x \in A$  implies  $x \in B$ . We say that two sets A and B are equal and write A = B if  $A \subseteq B$  and  $B \subseteq A$ .

FUNDUSZ SPOŁECZNY

C7FOWFK - NAJLEPSZA INWESTYCJA

4/26

### Sets: notations

Example:  $A = \{1, 2\}, B = \{1, 2, 3\}$ . Clearly,  $A \subseteq B$  and  $A \neq B$ . Sometimes it is impossible to list all elements of a set. In that case we will use the following notation:

$$\{x \in \mathbb{R} \mid x > 3\}$$
 or  $\{x \mid x \in \mathbb{R} \text{ and } x > 3\}$ 







### **Basic operations**

#### Set operations

#### If A and B are sets then:

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\},\$$
  

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\},\$$
  

$$A \setminus B = \{x \mid x \in A \text{ and } x \notin B\},\$$
  

$$A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$$









Э

イロト イボト イヨト イヨト

### **Basic operations**

Example: 
$$A = \{1, 2, 3\}, B = \{3, 4, 5\}.$$

$$A \cup B = \{1, 2, 3, 4, 5\},\ A \cap B = \{3\},\ A \setminus B = \{1, 2\},\ B \setminus A = \{4, 5\}.$$

Let  $A = \{1, 2\}, B = \{a, b, c\}.$ 

 $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$ 





















イロト イポト イヨト イヨト

Э

#### Let X, Y be sets.

#### Definition

Any subset  $R \subseteq X \times Y$  is called a *relation* between set X and Y. If Y = X then we say that  $R \subseteq X \times X$  is a *relation on a set* X.

Let 
$$A = \{1, 2\}, B = \{a, b, c\}.$$

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

Examples of relations between A and B:  $\emptyset, \{(1, a), (2, a)\}, \{(2, b)\}, A \times B$ 



### **Relations:** notation

Let *R* be a relation between *X* and *Y*. For a pair  $x \in X$  and  $y \in Y$  we write *xRy* whenever  $(x, y) \in R$ . Example: For  $A = \{1, 2\}$  and  $B = \{a, b, c\}$  and  $R = \{(1, a), (1, b)\}$  we have 1*Ra* and 1*Rb*.









# Functions: definition

#### Definition

If A and B are two sets, then a *function* f from a set A to B is a relation  $f \subseteq A \times B$  such that for any  $a \in A$  there is a unique  $b \in B$  such that *afb*.

If f from A to B is a function then we write b = f(a) instead of afb. We write  $f : A \rightarrow B$  to indicate that f is a function from A to B. If  $f : A \rightarrow B$  then the set A is called *the domain* of f and B is called *the codomain* of f.









### Functions: definition

Example: 
$$A = \{1, 2, 3\}, B = \{a, b, c, d\}$$

$$f(1) = b,$$
  
 $f(2) = d,$   
 $f(3) = b.$ 

$$g(1) = d,$$
  
 $g(2) = c,$   
 $g(3) = b.$ 









イロト イポト イヨト イヨト

Э

### Image

#### Definition

Let A and B are sets and  $f : A \to B$  be a function. If  $X \subseteq A$  then the image of X, denoted by f(X), is the set

$$f(X) := \{f(x) \mid x \in X\}$$

Example:  $A = \{1, 2, 3\}, B = \{a, b, c, d\}$ 

$$f(1) = a, f(2) = d, f(3) = d.$$

Then:  $f({1}) = {a}, f({1,3}) = {a,d}, f({2,3}) = {d}.$ 

#### Definition

If  $f : A \to B$  is a function then the set f(A) is called the image of f.

Warning: Image of a function is not the same as its codomain.

### Functions: other definitions

Example: 
$$A = \{1, 2, 3\}, B = \{a, b, c, d\}$$

f(1) = b,f(2) = d,f(3) = b.

The codomain of f is B, whereas the image is  $\{b, d\}$ .

$$g(1) = d,$$
  
 $g(2) = c,$   
 $g(3) = b.$ 

The codomain of g is B, whereas the image is  $\{b, c, d\}$ .



3 ∃ ≥ < ∃ ≥</p>

### Inverse image

#### Definition

Let A and B are sets and  $f : A \to B$  be a function. If  $Y \subseteq B$  then the inverse image of Y, denoted by  $f^{-1}(Y)$ , is the set

 $f^{-1}(Y) := \{x \mid f(x) \in Y\}$ 

Example:  $A = \{1, 2, 3\}, B = \{a, b, c, d\}$ 

$$f(1) = a, f(2) = d, f(3) = d.$$

Then:  $f^{-1}({a}) = {1}, f^{-1}({d}) = {2,3}, f^{-1}({b}) = \emptyset$ .

# Fact If $f : A \to B$ is a function then $f^{-1}(B) = A$ .

# Function composition

#### Definition

If  $f : A \to B$  and  $g : B \to C$  are functions then the *composition*  $g \circ f$  is a function whose domain is A and whose codomain is C which is defined by

$$(g \circ f)(a) = g(f(a)).$$

Example: 
$$A = \{1, 2, 3\}, B = \{a, b, c, d\}, C = \{0, \#\}$$

$$f(1) = a, f(2) = c, f(3) = a,$$
  

$$g(a) = @, g(b) = \#, g(c) = \#, g(d) = @,$$
  
Then:  $(g \circ f)(1) = @, (g \circ f)(2) = \#, (g \circ f)(3) = @.$ 



Image: A Image: A

# Composition

#### Fact

For functions  $f : A \rightarrow B$ ,  $g : B \rightarrow C$  and  $h : C \rightarrow D$  we have

$$h\circ(g\circ f)=(h\circ g)\circ f.$$

Proof on the tutorials.







イロト イボト イヨト イヨト

# Injective functions

#### Definition

A function  $f : A \to B$  is called *one-to-one* or *injective* if any two different arguments have different values. In other words, if for two arguments  $x_1, x_2 \in A$  the values  $f(x_1) = f(x_2)$  then  $x_1 = x_2$ .

Example:  $A = \{1, 2, 3\}, B = \{a, b, c, d\}$ 

$$f(1) = a, f(2) = d, f(3) = d.$$

The function f is not 1-1.

$$g(1) = a, g(2) = d, g(3) = c.$$

The function g is 1-1.



18/26

# Injective functions

Examples: If  $f : \mathbb{R} \to \mathbb{R}$  then:

f(x) = x + 1 - is 1-1  $f(x) = x^2$  - is not 1-1

If  $f : \mathbb{R}_+ \to \mathbb{R}$  then:

$$f(x) = x^2 - \text{ is } 1 - 1$$



• • = • • = •

## Inverse functions

#### Definition

If a function  $f : A \to B$  is 1-1 then we define a function  $f^{-1} : f(A) \to A$ , whose domain is the image of f and whose codomain is the domain of f, by:

$$f^{-1}(b) = a$$
 if  $f(a) = b$ .

 $f^{-1}$  is called the inverse of f.

#### Warning

If f is not 1-1 then it is impossible to invert it.



イロト イボト イヨト イヨト

### Inverse functions

Example:  $A = \{a, b, c\}, B = \{1, 2, 3, 4\}$  Let  $f : A \to B$  be defined by:

$$f(a) = 2, f(b) = 1, f(c) = 4$$

Then the inverse  $f^{-1}$ :  $\{1, 2, 4\} \rightarrow A$  is

$$f^{-1}(1) = b, f^{-1}(2) = a, f^{-1}(4) = c$$







• • = • • = •

### Composition and inversion

#### Fact

If the function  $f : A \rightarrow B$  is 1-1 then for any  $a \in A$  the function f and its inverse  $f^{-1}$  satisfy:

$$(f^{-1} \circ f)(a) = f^{-1}(f(a)) = a$$

Moreover, for any  $b \in f(A)$  we have

$$(f \circ f^{-1})(b) = f(f^{-1}(b)) = b$$

Example: If f(x) = 2x + 1 then  $f^{-1}(y) = \frac{y-1}{2}$ .



## Surjective functions

#### Definition

A function  $f : A \to B$  is called *surjective* or *onto* if for any element b there exists an element a whose value under f is b. In other words, for any  $b \in B$  there is  $a \in A$  such that f(a) = b.

#### Fact

A function  $f : A \rightarrow B$  is surjective if and only if f(A) = B.







### Surjective functions

Example: Let  $A = \{1, 2, 3\}, B = \{a, b, c\}$  and define  $f : A \rightarrow B$  and  $g : A \rightarrow B$ :

$$f(1) = a, f(2) = d, f(3) = d.$$
  
$$g(1) = a, g(2) = c, g(3) = b.$$

The function f is not onto, whereas the function g is.







# Surjective functions

Examples: If  $f : \mathbb{R} \to \mathbb{R}$  then:

f(x) = x + 1 - is onto

 $f(x)=\sin x$  - is *not* onto because  $f(\mathbb{R})=[-1,1].$ If  $f:\mathbb{R} o [-1,1]$  then:

 $f(x) = \sin(x)$  - is onto



# **Bijective functions**

#### Definition

If a function  $f : A \rightarrow B$  is 1-1 and onto then it is called a *bijection*.

#### Fact

A composition of two bijections is also a bijection.

Proof on the tutorials.







イロト イボト イヨト イヨト



26/26